
Raspberry Pi

-electronic work for controlling a robot-

Part #1

2019. 08. 01. (Thur.)

Dai Owaki, Ph. D,

Asocci. Prof. Neuro-robotics Lab. (Hayashibe Lab.),

Dept. of Robotics, Graduate School of Engineering,

Tohoku University

Presenter:

Hannan Ahmed, Master’s 1st Year

Let’s Enjoy Electronic Work with Raspberry Pi

✓ Electronic work is good education topics for both making things

(e.g. robot) and coding software (e.g. using C++, python)

✓ Raspberry Pi is a good tool for this, because it’s cheap (cheapest

5USD), high spec (lowest CPU around 1GHz), installed a Linux OS

(Raspbain), control electronic devices (GPIO pins), wireless (wifi &

Bluetooth), easy to use cameras (take pics & movies), and much

information on the web communities!!!

✓ The point is “enjoy the electronic work”

Spec of Raspberry Pi

35USD 35USD 5USD 10USD

Hardware Configurations on Raspberry Pi Zero W

Mini-HDMI

terminal

micro USB port (2.0)

Power supply

terminal

GPIO (General Purpose

Input/Output)

Camera Serial Interface

(CSI)

micro SD card slot

What do you need to begin Raspbarry Pi?

Required

• Raspberry Pi (3 or Zero W are recommended)

• Micro SD card (more than 4GB (16GB&class 10 is better))

• Micro-USB cable (for Zero W) or LAN-USB cable for (3):

Data communication cable (USB OTG: On-the-Go cable)

not only for power supply

Optional

• Power 5V

• Display (HDMI input)

• Keyboard (USB or Bluetooth)

• Mouse (USB or Bluetooth)

One of purposes of today’s lecture is to use

raspberry pi without these annoying things!

Step 1: Connecting to RasPi via SSH

$ssh pi@raspberrypi.local

pi = username

raspberrypi = local hostname

SSH = Secure Shell

-> Protocol for connection to remote computer

Install Software in Your PC

Tera Term VNC Viewer

Rapbain OS has been installed. Let’s Boot!!

Overview of Raspberry Pi Zero W
Just connecting to USB port!

Power is supplied via the port

SSH connection to Raspi via Tera Term

hostname = raspberrypi.local (initial) username = pi

pass = raspberry (initial)

Success connection (PC to raspi) !!!

Checking IP Address of Raspberry Pi

$ ifconfig

IP Address for the Internet

connection via USB.

192.168.137.*** -> Success!!!

IP Address for the Internet

connection via Wifi module on

Raspberry pi.

Now, not connected via Wifi

Checking for the Internet Connection

$ ping 8.8.8.8

Successfully connecting the internet via PC

Reboot of Rapberry Pi via SSH
$ sudo reboot

-> disconnect Teratern and LED on Raspi will be blinking (rebooting)

”sudo” means execute a command with “administrative right”

Step 2: Connecting via VNC
VNC (Virtual Network Computing) = Remote control of raspberry pi (or some PC) via network

Server software on Raspi (host, already installed) and client software (viewer) on PC

-> you don’t need display, keybord, and mouse for Raspi, PC will become them via VNC

VNC Viewer on PC
raspberrypi.local (=hostname)

User = pi

Pass = raspberry

Success!!!, You can manage Raspi via PC

Connecting to Raspi’s disk via Samba

¥¥hostname

“Double click”

user=pi

pass

Success!!!

Power off Raspberry Pi

$ sudo poweroff

I/O Interfaces on Raspberry PI
SD side is up 1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

GPIO (General Purpose Input/Output)
Power: +3.3V (1&17) and +5V(2 & 4) can use for power supply to electronic

devices or input for circuit

GND (6,9,11,20,25,30,34,39): 0V output pins

GPIO(white): General Purpose input and output pins (3.3V or 0 V)

UART (Universal Asynchronous Receiver Transmitter):

2-wired (TxD: Transmit, RxD: Receive) Communication to PC or electronics

devices

I2C (Inter-Integrated Circuit): Communication standard to electronics devices

(motors and sensors). SDA (3) is for data transmission and reception. SCL (5)

is for clock synchronization between devices.

SPI (Serial Peripheral Interface): Communication standard to electronics

devices. MOSI (19)=data transmission, MISO (21)=data reception, SCLK

(23)=synchronization between devices, CE0(24), CE1(26) = port for selecting

the target device

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

Pin Configuration

If you activate these interfaces, you cannot use these pins as GPIO (Digital I/O or PWM)

How to control LEDs and Motors

Libraries for Using GPIO with Python

• raspberry-gpio-python: PRI.GPIO, standard libraries for python

• WiringPI: High-performance lib., support for the use of I2C and SPI

Installing WiringPI

$ sudo pip install wiringpi

Importing WiringPI module for python

import wiringpi (as pi)

Which is Anode(+) or Cathode(-) on a LED?

1. Can you find anode/cathode if you are

given an LED without any information?

2. What if the wires were cut?

Tips: How to Use Breadboard

✓Prototyping board to make a test electronic circuit

✓For examples, green lined holes are electrically connected on the background

✓All red lined holes (e.g. for +V) and blue lined holes (e.g. for GND) are connected

Blinking LEDs

Drawn by

How to Choose An Appropriate Resistor?
Data sheet from the LED used: VF = 2.2 V, IF = 20 mA

Voltage V [V]

C
u
rr

en
t

I
[A

]

VF

GPIO 23

GND

R
as

p
b
er

ry
 P

i
Z

er
o
 W

V
o

u
t

=
 3

.3
 V

1. VR = 3.3 – 2.2 = 1.1 V

2. GPIO output current for each

pin is limited within 16mA!

3. R > (1.1V)/(16mA)= 68.75 Ω

For example, If you choose 100 Ω,

current will be 11mA. (=1.1/100).

V
F

=
 2

.2

Imax = 16mA

V
R
=

3
.3

-2
.2

=
1
.1

Python Scripts for LED Blinking

#1: import wiringpi as pi (for GPIO)

#2: import time module (including stop

method in seconds (s) that are defined)

#4: Setting the led pin

#6&7: Setting the GPIO mode

as “output”=pi.OUTPUT

#10 Output from LED_PIN, here, pi.LOW

means 0V (=no output)

#11 Output from LED_PIN, here, pi.HIGH

means 3.3V (=default Digital output [V])

Question 1: How to code the script to blink 5 LEDs?

?

Question 2: How to Change Brightness of LEDs?

?

Pulse Width Modulation (PWM)

Output modulation like “analog” signal by using

only digital output signal!

Vc

0

a

b
Vc

0
a’

b

Average

Average

PWM signals: change in average value by only modulating

pulse width (a or a’) with the fixed pulse period (b)

Python script for “software” PWM in Raspi

#1: import wiringpi as pi (for GPIO)

#2: import time module

#4: Setting the led pin

#6&7: Setting the GPIO mode

as “output”=pi.OUTPUT

#9 Setting PWM range (0 to 100) of LED_PIN

#12 Setting PWM output (0) of LED_PIN

Please check how the brightness are changed according

to the parameter (duty factor)

Question 3: Change the Brightness of 5 LEDs,
respectively

?

What is a Motor?

✓Driving force (torque) source (Actuator) for Robots

✓AC(Alternate current) motors, DC(Direct current) motors, Stepping motor,

Servo motors, etc.

What is a Servo Motor?

✓For precise control of angular or linear position, velocity, and acceleration

✓A servomotor is a closed-loop servomechanism that uses position

feedback to control its motion and final position.

✓Servo motor includes an encoder (detect position, velocity, etc.), a control

circuit for precise control (e.g. PD control), a DC motor, and some gears.

Position (Angle) Control via PWM , e.g., SG90

5V

0V

1450us

20 ms
5V

0V
2400us

20 ms

Average

Average

5V

0V

500us

20 ms

Average

Note: Parameters for PD control on servo motors depends on the individual

motors, thus please check the datasheet of the corresponding motors.

0°

180°

90°

“Software” PWM and “Hardware” PWM

To control a servo motor, signal wave form should be precise,

because unstable signal make motor behavior unstable.

“Software” PWM (we use it to control LED brightness) is not

sufficient to control a servo motor. Control of a servo motor

requires precise PWM wave from (the required resolution is

about 0.1ms).

In Wiringpi, we can use “hardware” PWM that generated by CPU

(SoC) clock timer on GPIO18 (12pin) & GPIO13 (33pin).

Deactivate Audio Output
Audio output of Raspberry Pi would effect the (hardware) PWM signals,

because audio output also use hardware PWM to generate sounds.

$ sudo nano /boot/config.txt

comment out the following sentence:

#dtparam=audio=on

Control of a Servo Motor with “Hardware” PWM

#18: Setting for Hardware PWM

#19: Set Mark Space mode

(Default=Balanced mode)

$ sudo python servo2.py

For ”hardware” PWM, you should

use sudo to access CPU (SoC)

Thanks for
Listening!!!

Looking forward to
working with you all

^^

